
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May. 2022 1446
Copyright ⓒ 2022 KSII

http://doi.org/10.3837/tiis.2022.05.003 ISSN : 1976-7277

SaaS application mashup based on High
Speed Message Processing

Zhiguo Chen1,2,*, Myoungjin Kim4, and Yun Cui3,*

1School of Computer and Software, Nanjing University of Information Science and Technology
Nanjing, Jiangsu 210044 CHINA

2Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information
Science and Technology

Nanjing, Jiangsu 210044 CHINA
 [e-mai: chenzhiguo@nuist.edu.cn]

3 School of Computer, Jiangsu University of Science and Technology
Zhenjiang, Jiangsu 212100, CHINA

[e-mai: ycui@just.edu.cn]
4Innogrid

Jung-gu, Seoul 04551, SOUTH KOREA
[e-mai: tough105@innogrid.com]

*Corresponding author: Zhiguo Chen and Yun Cui

Received Marchr 2, 2021; revised March 16, 2022; accepted March 19, 2022;
Published May 31, 2022

Abstract

Diversified SaaS applications allow users more choices to use, according to their own
preferences. However, the diversification of SaaS applications also makes it impossible for
users to choose the best one. Furthermore, users can't take advantage of the functionality
between SaaS applications. In this paper, we propose a platform that provides an SaaS mashup
service, by extracting interoperable service functions from SaaS-based applications that
independent vendors deploy and supporting a customized service recommendation function
through log data binding in the cloud environment. The proposed SaaS mashup service
platform consists of a SaaS aggregation framework and a log data binding framework. Each
framework was concreted by using Apache Kafka and rule matrix-based recommendation
techniques. We present the theoretical basis of implementing the high-performance message-
processing function using Kafka. The SaaS mashup service platform, which provides a new
type of mashup service by linking SaaS functions based on the above technology described,
allows users to combine the required service functions freely and access the results of a rich
service-utilization experience, using the SaaS mashup function. The platform developed
through SaaS mashup service technology research will enable various flexible SaaS services,
expected to contribute to the development of the smart-contents industry and the open market.

Keywords: SaaS mashup, Apache Kafka, message processing, recommendation, rule
matrix.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1447

1. Introduction

Web-based technologies have attained a considerable stage of development. Especially with
the popularity of smart devices, their influence has infiltrated every industry and affects
everyone around the world. With the development of web-based technologies, computing
powers that most businesses need come from cloud-computing services using the recent
concept of “computing as a utility.” Customers receive web-based applications by way of a
new platform called Software as a Service(SaaS), according to the cloud-computing services.
Customers have been fretting about understanding and utilizing a variety of functions that the
applications provide. To solve that aspect of this issue, a new type of service was born and
named the “cloud service brokerage” (CSB)[1-4]. It provides a platform for agencies with
customers and businesses to safeguard the highest profit. In the past few years, CSB has
received much attention and accomplished a new type of ecosystem, by merging cloud
resources and services. CSB is a service and also a framework that gained various companies’
acceptance of agents for their cloud services. With the agency services, it supports cloud
services to customers according to their needs and conditions of economics, locations, and
functional requirements. Along with the development of CSB, the SaaS mashup service was
proposed as a concept, to manage the functions of SaaS applications utilized in an independent
environment.

The concept of mashup services had been defined a long time ago, and mashup technology
has been studied in many research areas, to improve the quality of life and enhance business
values. Mashup services concisely describe various data that can be interconnected with each
other, to give customers a novel user experience (UX)[5, 6]. Based on the concept of the
mashup, the SaaS application mashup extracts many kinds of functions from SaaS applications
and makes SaaS applications function via interconnection rules. These rules, also called
“recipes,” can be created by customers who can interconnect according to their functional
needs, and supporters make regulations to help customers make rules. Depending on the SaaS
application mashup service, we propose an extension concept that includes the newest
functions—interconnection services and recommender services for supporting customization
mashup services, called the SaaS mashup platform. The SaaS mashup platform can integrate
a variety of functions of SaaS applications to meet customers’ requirements for greatly
improving applications’ usability and practicability, to enrich customers’ UX.

The SaaS mashup platform includes the SaaS aggregation framework (SAF) and log data
binding framework (LDBF). SAF comprises an authorization technology and high-
performance message-processing technology for interconnecting a variety of functions of SaaS
applications[7-9]. The authorization is used to construct web interfaces of customers and
administrators, respectively, called “web-based portal service.” The Apache Kafka framework
is used to classify the messages that declare the functions of applications, and it interconnects
the functions based on the content of the messages, called “high-performance message
processing[10-17].” Just as the name implies, LDBF collects the log data that records the
information, including customers’ service-use behaviors. According to the log data, LDBF
extracts the data of customers, providing a customized recommendation service and proposing
a novel concept called an “event processing rule matrix”[18-24].

The proposed platform focuses on supporting a more convenient environment, by using
application interconnection and a rule matrix-based customized recommendation mechanism
for satisfying customers’ needs and giving customers a better UX. SaaS mashup services differ
from general mashup services. The key point is to decide interconnecting more than two
functions of any application with the open API that the developers support.

1448 Chen et al.: SaaS application mashup based on High Speed Message Processing

Contribution and paper outline. Our contribution in this paper is as follows.
Innogrid provided an independent cloud-computing environment, established for data

processing, storing, and analyzing, and also constructed a web interface framework.To interact
with each other’s functions, the open APIs provided by the developers have been collected and
analyzed, involving the interfaces of the big data analysis system and smart home system.
More than 30 services, 130 functions, and 370 rules are declared for providing service
mashup.A rule matrix-based recommendation mechanism adapted to the specifications of the
SaaS mashup services has been proposed for enhancing the customer’s UX satisfaction.

The structure of this paper is as follows. We discuss the differences between general
mashup services and proposed SaaS application mashup services in section 2. Section 3 and 4
expose detailed parts of each function of two frameworks in the SaaS mashup platform. We
evaluate and discuss in section 5 and 6 the result of the Apache Kafka-based event message-
processing system for the functions interconnection and user experience, for utilizing the
prototype of the platform. Section 7 concludes the paper.

2. Related Works
Overseas, CSB technology development is being actively carried out under the leadership of
global IT companies and government. They have launched numerous services to form a profit
structure, and core technologies are under research and development. The cloud service
industry will gain momentum through the development of CSB technology around the
world[4]. Like most of the IaaS-based service brokerage services, it is expected to grow
continuously until 2025. Recently, a new SaaS mashup service that provides a service to relay
various SaaS-based services and link SaaS functions is attracting attention. Unlike a general
cloud mashup service, the SaaS mashup service provides a new type of service by linking SaaS
functions, rather than by integrating data generated from heterogeneous clouds[25, 26].
Several sources describe the existing mashup service providing services that focus on data by
combining various data in one web service and expressing it in a new format. AWS
Marketplace, Dell Boomi, HP Aggregation Platform for SaaS, and Rackspace Cloud Tools
Marketplace are the most representative mashup service types. In particular, the HP
Aggregation Platform for SaaS enables the creation of new business models through the
integration of various services from service providers. Such data-integration services can
create new services, but several sources confirm that the mashup service uses a large amount
of data and requires a complex analysis process, creating high demand for it. In addition,
changing to a unified data format through data normalization, data sorting, and data format
requires applying various algorithms.

The SaaS mashup service can create a connection between service functions through
interworking with SaaS functions, with no need for data processing analysis and, thus, a new
type of service according to the user's requirements[27-30]. Representative companies that
provide such a service are IFTTT and Zapier. IFTTT, whose name is an abbreviation of “IF
This, Then That,” provides web-based SaaS mashup service that can arbitrarily link several
separate services and applications existing on the Internet and computers[31]. In the past, users
linked heterogeneous applications through direct coding. Now, this service enables linking
service functions in an automated form.

IFTTT defines the fundamental service as “if this condition occurs” in one service, then
“do it like this” in another service, forming a kind of automated application service to use
through interworking between service functions. A user-defined service function interworking
combination is called a “Recipe.” Other users’ recipes can be shared, and recommendations

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1449

are made based on the recipe’s number of uses and ratings. This supports service linkages,
focusing on such productivity services as email, photo management, storage, and notes.

Zapier, an SaaS interworking service similar to IFTTT, supports more service interworking
than IFTTT, up to 100 cases per month for free use, with up to three types of interworking.
“Zap” is the interworking rule between services, and the rules to be executed have detailed
definitions. However, the user must bear responsibility for the grammar rules the service uses
and understanding the API.

The existing SaaS mashup service provides a simple 1:1 service for interworking with SaaS
functions but not a 1:N service suitable for diversified user requirements. In addition, as the
1:1 service is the main one provided, the economic burden on the user increases. The
recommendation service for the user provides the results of a simple recommendation function,
based on the service usage time and service rating[32, 33]. However, it does not support the
customized recommendation service for the user through the service usage log analysis. In
addition, the existing SaaS mashup service requires users to manage the inconvenience of
having to understand and set the service function, interworking rule, and API directly, to create
the service linkage using API. In this paper, we propose an SaaS mashup service platform that
can compensate for these problems.

3. SaaS Mashup Service Platform

3.1 Main Part of the Platform
The SaaS Mashup Service Platform (SMSP) interconnects a variety of independent SaaS
application functions, such as cloud-based business services, social network services (SNS),
and legacy services. SMSP consists of an SaaS aggregation and log data binding frameworks.
The SaaS aggregation framework includes interconnectable SaaS functions, “SaaS channels”
that the administrator of the platform or the companies that establish the SaaS application
services define. It also includes modules for message processing, SaaS application
authentication, and management. The log data binding framework includes an event
processing rule matrix engine, for real-time SaaS mashup events, and an SaaS mashup
recommender engine, for service recommendation using collaborative filtering. Also, the
construction of the SaaS mashup database enables storing service log data, channel
information, and customers’ information.

The basis for the design of SMSP was eliciting service requirements to provide the
functions interconnecting mashup services and examining the validity of each technology to
construct the whole platform. The design of the SaaS aggregation framework enables legacy
services or new kinds of service functions to be cross interconnected for improving the
utilization factor. Based on the SaaS aggregation framework, functions can be interconnected
for data or information integration, every function’s cross-connection can trigger
corresponding events, and every event would be caught and written on the “log data” disk,
including customer information and a time stamp. The event processing rule matching engine
can create the log data. Analyzing the log data, the SaaS mashup recommender engine can
provide customized recommender service for each user, to enhance UX.

3.2 SMSP Database
SMSP provides the functions interconnection by using the SaaS channel and constructs a
recommender mechanism using log data for customers. SaaS channels, log data, and user
information all must be stored in a reasonable place; we designed a database for SMSP called

1450 Chen et al.: SaaS application mashup based on High Speed Message Processing

“SaaS Mashup Description Database” (SMDD). SMDD includes 23 tables for SaaS channels,
recipes, trigger channels, action channels, user information, historical log, recommender
service data, and similar items. SMDD holds all the important data, and all of the important
parts of SMSP keep a connection with SMDD all the time.

SMDD includes two parts—one for the legacy and general services and the other for the
big data services.

4. SaaS Aggregation Framework
The SaaS Aggregation Framework (SAF) focuses on interconnecting SaaS channels. However,
some SaaS channels serve as trigger channels, the initial segment in SaaS mashup services,
and the others serve as action channels, the actuating segment. The recipe is just like a guide
or a stipulation to interconnect a trigger channel, and action channels must follow. SAF also
includes a web-based service portal that collects customer authentication of the SaaS
application to the concrete unified authentication management module. The Apache Kafka-
based message-processing module is the core of SAF.

4.1 Service Definition and Authorization in SAF
SaaS application gets centralized management and is “on-demand software.” Customers must
get access licenses to use the functions of SaaS applications on the web. Especially, most SaaS
applications support RESTFUL API for additional utilization or extension by other
organizations, so this paper calls them “SaaS channels.” As mentioned above, trigger channels
and action channels belong with SaaS channels, with trigger channels as the initial segment
and action channels as actuating segments. A combination of a trigger channel and action
channels constitutes a mashup service that comes from a defined recipe.

The word “recipe” refers in IFTTT to combining a function and another function, according
to a rule that an administrator or service providers define. To provide a variety of SaaS mashup
services, the usability of each channel distinguishes trigger channels and action channels, and
they are registered in SMSP. In this paper, the recipe has two defining parts. The first is the
basic construction, a trigger channel combined with an active channel and marked 1:1. The
other is a trigger channel combined with more than one action channel and marked 1:n. This
enhances the usability of various SaaS functions and improves UX.

To utilize the SaaS mashup service, customers must register a personal ID and services
authentication that SaaS application supporters provide. SMSP includes a unified
authentication module for registering and storing service and user authentication information.
Just as its name implies, the SaaS application unified authentication module manages all
services and user authentication data.

4.2 Kafka-based Message Processing and Function Interconnecting Module
The message processing and function interconnection module is the core part of SAF. The
definition of the message must be clarified at this point. The messages include the user ID and
the recipe ID to confirm who requires which services. The Kafka producer generates a message
according to a cycle that each recipe defines.

Kafka adapts to process a huge number of logs in a distributed environment, based on the
Pub/Sub mechanism[34, 35]. The producer generates messages and transfers the messages to
the worker node, known as “the consumer.” How to transfer the message from producer to
worker node is the key point. As mentioned above, Kafka consists of the producer, the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1451

consumer, and the topic. Topics store the messages already classified in partitions by the
trigger channel of the recipe. Trigger channels connect with SaaS channels that are split into
three categories, such as SNS, IoT, and business, that include Big Data. Based on the SaaS
channel classification, the topics are also defined.

Fig. 1. The workflow of the message processing based on Kafka

Fig. 1 illustrates the workflow of the message-processing module, based on Kafka. As the

diagram shows, the cluster includes three brokers consisting of a producer, three topics, and
three consumer groups. Each consumer group includes three worker nodes whose main
functions are to subscribe to messages from the specified topic, based on the Kafka message
transmission mechanism, and interconnect SaaS application functions based on the recipe that
the message includes.

Fig. 2 shows the interconnecting SaaS application functions in the worker nodes. The
progress of interconnecting the functions is as follows. A worker node gets a message from a
specified topic and extracts the recipe and user IDs. Using the recipe ID, the worker node
queries the trigger channel and action channel(s) to obtain the token of each trigger and action
channel by using the user ID. Then, it requests service permission from the specified SaaS
application, using the token and REST API on the trigger side. The worker node gains data
and transmits it to the action side. The workflow for obtaining service permission on the action
side is the same as on the trigger side. After interconnecting the functions, the data of the end
service includes tokens and the user ID (the recipe ID would be dropped), and the worker node
starts to reload another message for mashup service. When a user completes a mashup service,
we define this is as a created event. After completing the workflow of interconnecting
functions, the worker node transfers the user ID and recipe ID to the real-time event handler
included in the log data binding framework and drops them. The data that the worker nodes
transmit are defined as event information, to be used for customized recommendation services.

1452 Chen et al.: SaaS application mashup based on High Speed Message Processing

Fig. 2. SaaS mashup process

5. Log Data Binding Framework
The Log Data Binding Framework (LDBF) creates and stores an SaaS mashup service usage
log, using the user and recipe IDs included in the event information. It collects and binds log
data per user periodically, to support the customized SaaS recommendation service. To
recommend the most appropriate mashup service to the user, a rule matrix mechanism is
provided that depends on the mashup services usage history. We propose a two-stage approach
to solving the cold-start drawback in the memory-based recommendation. The proposed LDBF
comprises an event processing rule matrix engine and SaaS mashup recommendation engine.
The event processing rule matrix engine includes a real-time event handler, a multiple SaaS
functions splitting module, the event processing rule matrix, and a log creating/storing module.
The SaaS mashup recommender engine includes a scheduler, log data collecting/processing
module, recommender algorithm-based processing module, and individual recommended data
storing module. The event processing rule matching engine creates and stores log data, using
event information. The SaaS mashup recommender engine creates and stores user-appropriate
mashup service recommendation information, using binding data that individual log data
binding processing creates.

5.1 Event Processing Rule Matching Engine
The proposed SMSP provides SaaS application mashup services and, especially, also supports
SaaS mashup service recommendation functions, based on service usage log analyzing and
processing. To provide customized SaaS mashup recommendation services, the event rule
matching engine involves a real-time event handler, a multiple SaaS function mashup
separating module, and log data creating a module and the Rule Matrix.

SAF completes an SaaS mashup service for a user, then transmits user and recipe IDs to the
real-time event handler, whose main job is to distinguish a 1:1 recipe from a 1:n recipe. Then,
it transmits the 1:1 recipe ID to the log creating and storing module and the 1:n recipe ID to
the multiple SaaS functions mashup separating module. The real-time event handler also
transmits the user ID when transmitting the recipe ID.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1453

Fig. 3. Real-time Event Handler

The MSFMSM (Multi SaaS function mashup splitting module) splits a 1:n recipe into n 1:1

recipes, to support more effective recommendation services. The general SaaS mashup
services usually support a 1:1 recipe; however, the proposed SMSP provides a 1:n recipe. The
particular service approach can provide an effective mashup service for users, but there is a
problem when processing log data binding to support a customized recommendation service
based on users’ hobbies. The recommendation service function analyzes users’ history
constructed from log data that includes a 1:1 recipe. However, the 1:n recipe consists of a
trigger channel and n action channels. Suppose a user utilized a mashup service named “1:n
recipe A” that includes a “1:1 recipe B,” and the SMSP stores both A and B in the log according
to the user. Then, recipe A and B are independent and not relational, even if recipe A includes
recipe B and others. We cannot comparatively discover a relationship among the recipes for
supporting users with an enhanced recommendation service. Hence, MSFMSM specializes in
splitting a 1:n recipe into n independent 1:1 recipes. After splitting the 1:n recipe, MSFMSM
sends the split recipes to the log creating/storing module with the user and cycle information.
Fig. 3 shows the workflow of MSFMSM.

The log creating/storing module creates log data according to user ID, recipe ID, and cycle
information, supported by the event handler and MSFMSM. It also stores the log data in
SMDD, to generate the historical log data, and sends the matrix module the log data at the
same time for the recommendation service. Fig. 4 illustrates the workflow of the log
creating/storing module.

The proposed rule matrix supports two functions. First, it creates a matrix that includes the
user ID and recipe ID, both of which are in the recommendation list that the recommendation
engine creates. Second, it receives log data from the log creating/storing module to verify the
accuracy of the recommendation list. The rule matrix is defined to provide more customized
recommendation services, comparing the usage services with recommended services through
analyzing the rate of usage in the recommendation list.

1454 Chen et al.: SaaS application mashup based on High Speed Message Processing

Fig. 4. The Workflow of Log Data Creating and Storing

5.2 Service Recommender Engine
The purpose of the service recommender engine is to recommend a piece of customized service
information according to an analysis of the users’ behavior log data. The service recommender
engine includes a scheduler, the log data collecting and processing module, the recommender
algorithm, and an independent user-based behavior storing module. Each part interacts with
the others to provide a recommending service.

The recommendation approach consists of two steps. To solve the cold-start issue, the first
step offers recommendation services utilizing the applications that users select when they
register with SMSP. When users first get in touch with SMSP, there is no log data for them,
so SMSP cannot recommend services to those users. Therefore, when the users register with
SMSP, they must choose three applications that interest them or that they frequently use.
According to the selected applications, SMSP recommends some interconnected services
mostly used in SMSP. However, the recommended services cannot precisely fit these users,
so the service recommender engine supports the second step.

The second step provides a customized recommendation service to analyze the users' hobby
using the log data. The services rating is generated by using service duration accumulative
calculation, not based on users' ratings. The range of the rating is from 10 to 1, and 0 expresses
unused services. In this paper, Collaborative Filtering is used for the recommendation service.
The duration of analyzing log data once is 24 hours.

6. Benchmark of High-Performance Message Processing
SMSP transmits recipes to worker nodes using the Apache Kafka-based high-speed message-
processing framework for supporting SaaS mashup services. The framework is one of the most
important parts of transferring the message to include the recipe, user information, and cycling
from producer to worker nodes. Kafka can more rapidly deliver massive recipes that many
users create simultaneously, based on distributed message processing. This section presents

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1455

the number of messages that can be transmitted per second, through performance tests on
Kafka producers and consumers in a distributed environment. It also shows the processing
performance of Kafka through digitized message throughput. The reason Kafka is suitable for
the SMSP it proposes appears by comparing Kafka and RabbitMQ, which provides the
message-processing function in a similar structure.

6.1 Performance Test System Environment
Kafka, which provides high-speed message processing in SMSP, was installed in a cluster
using three virtual nodes. The proposed platform was built as a test node, based on Cloudit 5.0,
and tested in an environment where running SMSP can have a significant impact on Kafka’s
actual performance. Therefore, the environment utilized in this performance evaluation was
installed with the same structure as the virtual environment, using three physical computer
nodes, and Kafka’s performance was tested. Table 1 shows the specifications of the physical
computer nodes used in the Kafka performance test.

Table 1. H/W for Performance Test
Content Specification

CPU Intel® Core ™ i3-2120 3.3GH

Memory 8GB

HDD 2T

Network Card Intel Corporation 82579V Gigabit

OS Ubuntu 14.04.5 LTS

For the Kafka test, a three-node computer cluster was configured with the same
specifications as Table 1 shows, and Table 2 shows the software environment for the Kafka
installation and performance evaluation. Also, RabbitMQ's software version for comparison
with Kafka appears in Table 2. For analysis and comparison of actual message throughput,
the software itemized in Table 2 was installed on all nodes.

Table 2. S/W for Performance Test

Software Version

Apache Kafka 2.11-0.10.2.1

Apache ZooKeeper 3.4.10

Java 1.8.0_131

RabbitMQ 3.5.15

6.2 Experimental Method
SMSP creates a recipe using the trigger channel and action channel the user selects through

a web portal. The producer creates a message containing the recipe ID, user ID, and the cycle,
and delivers it to the broker. The broker stores the received message in the partition of the
predefined topic and waits for the request from the consumer. The requesting consumer

1456 Chen et al.: SaaS application mashup based on High Speed Message Processing

receives a message from the broker with the partition of the specified topic. In SMSP, the
consumer includes the worker, and the worker extracts user information, recipe information,
and cycle information from the received message, to process the data. The message the
producer generates is composed in JSON format, the size is 40 bytes, and the data included
appears in the example below.

{“user_id”: 36, “recipe_id”: 878, “cycle”:1}

Kafka provides two script programs that can test its performance on a system that developers

built—more precisely, the programs can test the performance on the respective producer and
consumer sides. The performance test program for the producer is the throughput per second
of messages transmitted through the partition. The performance test program for the consumer
measures the throughput per second of messages received over the partition. The consumer
performance test program measures the throughput per second when outputting a message
from a partition of a topic that the consumer determines. Through the test programs, we can
obtain the result of performance measurement for system evaluation.

The performance test programs Kafka provides are “kafka-producer-perftest.sh” and
“kafka-consumer-perf-test.sh,” respectively, included in Kafka's installation package. There
are various setting fields for testing the message transmission amount of producers and
consumers using a performance test program, some of which are optional and some required.
A performance test requires entering items in the fields marked “required” in the remarks
column of each table. Also, some fields contain default values when there is no input value.

Kafka's performance varies depending on the partition and replication settings of the topic
defined in the broker. To this end, we define the topic with four different setting values, to test
the performance of producers and consumers. The created topic appears in Table 3.

Table 3. Topic List in Kafka

Topic ID Configuration
A 3 partitions, 3 replications
B 1 partition, 3 replications
C 3 partitions, 1 replication
D 1 partition, 1 replication

“Topic” is a term for getting messages in Kafka. The producer and the consumer can

input/output a message only by specifying a topic. In the setting section of the topic (see Table
3), “partition” refers to the storage of the actual message. One topic must define more than one
partition and cannot be used without defining one partition. Both producers and consumers
either send or receive messages to or from the topic's partition. In Kafka, which has a pub/sub
structure, the consumer determines the topic for receiving the message, and the quantity of the
consumer determines the message. In Table 3, replication refers to the number of copies of
the partition. Kafka provides fault-tolerant functions as the general distributed system. Kafka
can select another leader to compensate, when the leader operating the partition is down, to
receive or output data again.

Performance tests for producer and consumer were of two types: a single test and a
simultaneous test. In the single test, the producer was tested for performance, and then the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1457

consumer was tested for performance. In other words, by independently testing the
performance of producers and consumers, the input/output of messages proceeds separately,
so there is no mutual effect. Simultaneous testing runs producer and consumer performance
test programs to affect message input/output performance.

In a single test, the message transmission rate per second of the producer is measured by
inputting a message using the producer at the same computer node, and the message
transmission rate per second of the consumer is measured by outputting the input message
using the next consumer. This enables verifying the absolute performance of producers and
consumers through independent tests.

Simultaneous testing verifies each performance by running producer and consumer
performance test programs on the same computer node at the same time. The simultaneous
test enables checking the relative performance because the producer inputs the message, and
the consumer consumes the message.

Since the system that provides the message-queuing function delivers the message (data)
from the producer to the consumer according to a certain rule, the message transmission
amount per second confirms its performance. The single test and the simultaneous test ran the
same script program to verify performance.

In the execution command to perform the producer performance test, “--topic” specifies the
name of the topic and enters a message in the topic partition. When the message is entered,
“throughput” is the amount of message input per second. Throughput was set to 2,000,000
for all execution codes, and the maximum throughput was set. The size of a single message is
“--record-size,” and the message SMSP generates is 40 bytes, so it is set to 40 for all execution
codes. “--Num-records” determines the number of messages to be input. It is set to 100 million
in the execution code and measures the number of messages input per second until 100 million
messages are input. The expression “--producer-prof” is defined as a URL indicating the
location of the broker, but in the case of a cluster, it lists all the URL addresses of the nodes.

“--Topic” in the execution command for conducting the consumer performance test
determines the name of the topic to be delivered. “--Show-detailed-stats” specifies that
detailed progress is displayed when the message is displayed. “--zookeeper” is a list of URLs
of the ZooKeeper nodes, run by specifying the data flow of the message and the ZooKeeper
servers that manage the Kafka cluster. “--Message-size” matches the producer's “--record-size,”
and the size of the message sent by SMSP to all executable codes is 40 bytes. “--Messages”
determines the total number of messages the consumer should consume, set to 100 million in
all executable code. The term “--thread” should be defined according to the number of
partitions in each topic, i.e., the number of consumers in the consumer group, and delivers
messages in association with at least one consumer per partition. Topics A and C are three
partitions, so “--thread” was set to 3, and topics B and D were one partition, so 1 was set.

In the performance test of producer and consumer, the message transmission per second
measures the average transmission rate per one time. The quantity of messages the producer
transmits is measured in units of 5 seconds (once), to calculate the number of messages sent
per second, and the consumer checks performance in the same way. In comparison with
RabbitMQ, the average performance per rabbit is calculated and compared.

6.3 Kafka Performance Test

1458 Chen et al.: SaaS application mashup based on High Speed Message Processing

A

C

E

G

B

D

F

H

Fig. 5. Performance of Kafka in SMSP

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1459

The performance results of the individual tests and joint tests of Kafka producers and
consumers using topics A, B, C, and D appear in the charts in Fig. 5. There, the x-axis means
the number of times to check the average message transmission per second, by defining 5
seconds as one time in the continuous message transmission time. The y-axis means the
number of times in the continuous message transmission time for 5 seconds. It represents the
calculated average message transmission volume after sending a message. As an example,
from the contents of A in Fig. 5, the value of the y-axis displayed on the x-axis 1 in the
producer's performance is 250,644. This means that through Topic A, the average number of
messages transmitted per second by the Kafka producer sending to the Kafka broker in the
first 5 seconds is 250,664 messages. The figure shown on the x-axis number 2 (see below) is
the average message transmission per second from the producer to the broker in the second 5
seconds. As such, in the chart, the x-axis represents the number of times in units of 5 seconds,
and the y-axis represents the average message transmission per second.

According to the performance test results A, C, E, and G in Fig. 5, the performance of the
consumer exceeds that of the producer. This is in the settings of all topics, so when the
producer creates a message and inputs it to the partition, Kafka's controller affects it. The
controller manages partition and replication in Kafka and sends partition information to
ZooKeeper. Messages the producer generates are input to the partition the controller
designates. When one topic consists of multiple partitions, the controller is in charge of
distributing the message to be input. In addition, the controller operates the replication
mechanism. A copy of the message applied to each partition is distributed to each broker,
according to the designated replication quantity, and consuming quantities of computer
resources in the distribution process. In addition, the producer receives an acknowledgment
from the leader of each partition. However, waiting for this acknowledgment takes time. For
this reason, when receiving a message from the producer, Kafka causes much latency, due to
the time the action of the controller and the acknowledgment consume, reducing the amount
of message transmission per second. A consumer can directly request a message from
ZooKeeper, using the partition location and offset information, and receive a message
determined to a topic. In addition, the consumer can receive the file directly from the message
storage location by using the socket without sending the message through the controller, which
is different from the producer. For this reason, the consumer shows better performance than
the producer.

Checking the results B, F, and H in Fig. 5 shows that the message transmission per second
of the producer and the transmission of the consumer are insignificant. If this is a concurrent
test, the producer inputs a message to the partition; then, the consumer can consume the
message, so the consumer waits for the message the producer inputs, and the performance is
similar. In conclusion, the producer's performance directly affects the consumer's performance
in the concurrent test, compared to the single test. In addition, the producer's performance in
the simultaneous test is worse than the producer's performance in the independent test, a result
of the controller action, replication action, and ZooKeeper action through the consumer
proceeding in a complex way. However, the result of B in Fig. 5 shows the performance of the
producer is better than that of the consumer. The reason is a problem that occurs in the process
of copying messages by replication.

As Fig. 5 illustrates, Kafka's performance shows a significant difference according to topic
setting in concurrent tests. Of course, the latency that occurs when inputting messages from
the producer determines this difference. The one that showed the best performance was using

1460 Chen et al.: SaaS application mashup based on High Speed Message Processing

topic D, and the producer's performance was the best in an environment with one partition and
one replication. Next, the test results using topic C show good performance because much cost
occurs in message replication under the load the controller generates. However, the
performance deteriorates over time because the load is greater when the controller distributes
messages to the partition than the load on replication. According to the test results using topic
A, although the performance fluctuates, it maintains a constant performance. The test result
using topic B shows the producer's performance is better than the result using topic C and
inferior to the result using topic D, but the consumer performance falls between the results
using topic A and topic C. The reason is that it degrades the consumer performance in the
process of copying the message with the replication setting.

Analysis of the results using topic B in the simultaneous test is as follows. Replication Kafka
provides distributes messages stored in partitions to nodes in the cluster, leaving replicas, to
provide a fault-tolerance function and select a replacement node when the partition leader is
suddenly down, to use as a leader. Here, copying the message stored in the partition to another
node or your own node is the same as outputting a message from the partition, just like an
actual consumer. Therefore, topic B has three replications per partition, so messages stored in
the actual partition are consumed by four consumers. In this process, because one resource is
consumed by consumers, it results in performance relatively inferior to the producers’. On the
other hand, topic A uses three replications, but this is similar to the producer's performance
because a large number of consumers consume a small number of messages in a distributed
message storage environment.

6.4 Performance Comparison Between Kafka and RabbitMQ
SMSP provides a message-sending function using Kafka. Kafka and RabbitMQ are the

platforms most used to support a message-queue service with many existing pub/sub
structures[36]. Therefore, this paper compares Kafka and RabbitMQ, which provide message-
queuing service using the message-processing method in the same structure. There is no test
program like Kafka in the RabbitMQ package. Therefore, the test was conducted using
“rabbitmq-perf test-2.2.0”, a RabbitMQ performance test program provided by GitHub. Unlike
Kafka, “rabbitmq-perf-test-2.2.0” cannot test the performance of producer and consumer
separately. That is, the test is carried out by creating producer and consumer in one node. To
compare them under the same conditions, in Kafka, producer and consumer were executed on
the same node, and that test result was utilized. The test results of RabbitMQ and Kafka appear
in Fig. 6. The results in Fig. 5 show Kafka’s much better performance than RabbitMQ’s.
According to the comparison results, in the same environment, the producer of Kafka shows
an average performance of 669.816 Msg/sec, and the producer of RabbitMQ shows a
performance of 45,618 Msg/sec. The Kafka consumer shows an average performance of
672.366 Msg/sec, and the RabbitMQ consumer shows an average performance of 41,180
Msg/sec. In these results, the producer standard deviation of Kafka is 83,393, and that of
RabbitMQ is 16,068; the consumer standard deviation of Kafka is 77,300, and RabbitMQ’s is
2,613. In terms of message transmission rate per second as an evaluation criterion, Kafka
shows more than 14 times the performance of RabbitMQ. However, RabbitMQ shows more
stable performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1461

A

B

Fig. 6. Performance Comparison

With poor performance and good stability compared to Kafka, the RabbitMQ results can be

explained in three main parts. The first is in the way the message is transmitted. Kafka can
transmit a large number of messages at a time, based on batch processing, but RabbitMQ uses
a general message-queue method. If consumer messages are delivered through a pull method,
worse results will be obtained than the measured results, because the consumer consumes only
one message at a time during the pull process. In addition, considering the situation where a
large number of messages are stored in the broker's queue, but consumers cannot consume
them, RabbitMQ provides a QoS limit mechanism. This is the second problem. If the amount
of messages that consumers cannot consume is input from the RabbitMQ producer, the QoS
limit mechanism reduces the number of producer messages sent per second. This result appears
in “A” in Fig. 6. The speed of the first producer showed a performance of 112,851 Msg/sec,
but in the next stage that dropped to 41,625 Msg/sec. This proves that the QoS limit mechanism
reduces the producer transmission amount. Lastly, RabbitMQ provides stability in message
delivery by sending an acknowledgment. Both the producer and consumer of RabbitMQ check
the acknowledgment for message delivery from the broker and then proceed with message
input/output.

Kafka also provides the acknowledgment function, but only for the producer, and it is
divided into synchronous and asynchronous. These differ in that the producer stores messages
in partitions on the broker and provides replication capabilities. The synchronous type sends
the result of checking up to the state of saving replicas in each node, as an acknowledgment
of the data stored in the leader's partition. Asynchronously, only the acknowledgment of the
data stored in the leader's partition is sent to the producer. Using the asynchronous method can
result in irretrievable data loss if the leader goes down. For this reason, we adopt the
synchronous method in general and propose the asynchronous method only for systems that
need to maximize the performance of Kafka.

SMSP utilizes a message-queue system to transmit JSON data, defined with a single user
ID, recipe ID, and cycle structure, as a message. In addition, considering the situation where
many users can use the SaaS mashup service by creating recipes in SMSP, this provides a
message transmission function using Kafka, which transmits numerous messages per second.

1462 Chen et al.: SaaS application mashup based on High Speed Message Processing

7. Conclusions
The proposed SaaS mashup service platform consists of SaaS aggregation and log data binding
frameworks. The SaaS aggregation framework provides web-based portal services, including
SaaS service authentication and operation functions, and defines SaaS channels, trigger
channels, action channels, and recipes to provide SaaS mashup services. In addition, high-
performance message-processing technology using Apache Kafka is supported, to provide a
quick SaaS mashup service according to the recipe the user creates. Users’ SaaS mashup
service information in the SaaS aggregation framework is stored as a history log by the event
processing rule matching engine, and user-specific binding data extracted from the log is
utilized for customized recommendation service. In addition, a rule matrix was defined to
recommend services suitable for users, and an SaaS mashup recommendation engine was
implemented, using memory-based cooperative filtering.

The SaaS mashup service platform that this paper proposes has a basic service form in
providing SaaS mashup service. However, to provide a better service environment, it derives
functional elements necessary for service improvement and includes a policy or legal part as
a pilot service. In the later stage, machine learning and knowledge graph technology will be
integrated according to the constantly changing service requirements, so as to provide users
with better recommendation services and strengthen the shortcomings of the platform in
recommendation functions. We will do our best to complete it as a product that can provide
the SaaS mashup service platform to be developed through the pilot service and transformed
into a product that users expect. The value of the SaaS services that the SaaS mashup service
platform generates is likely to exceed everyone's expectations.

Acknowledgement
This research was supported by the Startup Foundation for Introducing Talent of NUIST under
Grant No.2019r032, The National Natural Science Foundation of China under grant Numbers
62102190, 62072250.

References
[1] J. Y. Kim, K. Ro, “A Study on The Standard Platform Model for CSB Business,” Indian Journal

of Public Health Research and Development, vol. 9, no. 8, pp. 681-686, 2018.
[2] S. Venkateswaran, S. Sarkar, “Modeling Operational Fairness of Hybrid Cloud Brokerage,” in

Proc. of 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGRID 2018, pp. 563-572, 2018. Article (CrossRef Link)

[3] S. Sundareswaran, A. C. Squicciarini, D. Lin, “A brokerage-based approach for cloud service
selection,” in Proc. of 2012 IEEE 5th International Conference on Cloud Computing, No. 6253551,
pp. 558-565, 2012. Article (CrossRef Link)

[4] A. Elhabbash, F. Samreen, J. Hadley, “Cloud brokerage: A systematic survey,” ACM Computing
Surveys, vol. 51, no. 6, pp.1-28, 2019. Article (CrossRef Link)

[5] L. Sabatucci, S. Lopes, M. Cossentino, “Self-configuring Cloud Application Mashup with Goals
and Capabilities,” Cluster Computing, vol. 20, no. 3, pp. 2047-2063, 2017. Article (CrossRef Link)

[6] X. Zhou, C. Li, H. Zhang, F. Meng, D. Chu, “A Feature Tree and Dynamic QoS based Service
Integration and Customization Model for Multi-tenant SaaS Application,” in Proc. of 2020
International Conference on Service Science (ICSS), pp. 107-114, 2020. Article (CrossRef Link)

https://doi.org/10.1109/CCGRID.2018.00083
https://doi.org/10.1109/CLOUD.2012.119
https://doi.org/10.1145/3274657
https://doi.org/10.1007/s10586-017-0911-7
https://doi.org/10.1109/ICSS50103.2020.00025

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1463

[7] G. Kesidis, T. Konstantopoulos, M. A. Zazanis, “The distribution of age-of-information
performance measures for message processing systems,” Queueing Systems, vol. 95, no. 3, pp.
203-250, 2020. Article (CrossRef Link)

[8] P. Bhimani, G. Panchal, “Message delivery guarantee and status update of clients based on IOT-
AMQP,” Intelligent Communication and Computational Technologies, pp. 15-22, 2018.
Article (CrossRef Link)

[9] M. H. Javed, X. Lu, D. K. Panda, “Cutting the tail: designing high performance message brokers
to reduce tail latencies in stream processing,” in Proc. of 2018 IEEE International Conference on
Cluster Computing, pp. 223-233, 2018. Article (CrossRef Link)

[10] C. Esposito, F. Palmieri, K. K. R. Choo, “Cloud Message Queueing and Notification: Challenges
and Opportunities,” IEEE Cloud Computing, vol. 5, no. 2, pp. 11-16, 2018. Article (CrossRef Link)

[11] Y. Xue, S. Jin and X. Wang, "A Task Scheduling Strategy in Cloud Computing with Service
Differentiation," KSII Transactions on Internet and Information Systems, vol. 12, no. 11, pp. 5269-
5286, 2018. Article(CrossRefLink)

[12] I. Sadooghi, G. Kumar, K. Wang, D. F. Zhao, T. L. Li, I. Raicu, “Albatross: An efficient cloud-
enabled task scheduling and execution framework using distributed message queues,” in Proc. of
IEEE 12th International Conference on e-Science, pp. 11-20, 2016. Article (CrossRef Link)

[13] I. Sadooghi, K. Wang, D. Patel, D. F. Zhao, T. L. Li, S. Srivastava, I. Raicu, “FaBRiQ: Leveraging
Distributed Hash Tables towards Distributed Publish-Subscribe Message Queues,” in Proc. of
2015 IEEE/ACM 2nd International Symposium on Big Data Computing, pp. 11-20, 2015.
Article (CrossRef Link)

[14] M. J. Sax, S. Sakr, A. Zomaya, “Apache Kafka,” 2019. Article (CrossRef Link)
[15] J. W. Bang, S. W. Son, H. J. Kim, Y. S. Moon, M. J. Choi, “Design and implementation of a load

shedding engine for solving starvation problems in Apache Kafka,” in Proc. of 2018 IEEE/IFIP
Network Operations and Management Symposium, pp. 1-4, 2018. Article (CrossRef Link)

[16] H. Wu, Z. Shang, K. Wolter, “Learning to reliably deliver streaming data with apache kafka,” in
Proc. of 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 564-571, 2020. Article (CrossRef Link)

[17] C. N. Nguyen, J. S. Kim, S. W. Hwang, “KOHA: Building a Kafka-Based Distributed Queue
System on the Fly in a Hadoop Cluster,” in Proc. of 2016 IEEE 1st International Workshops on
Foundations and Applications of Self* Systems, pp. 48-53, 2016. Article (CrossRef Link)

[18] T. Badriyah, S. Azvy, W. Yuwono, I. Syarif, “Recommendation System for Property Search Using
Content Based Filtering Method,” in Proc. of 2018 International Conference on Information and
Communications Technology, 2018. Article (CrossRef Link)

[19] X. Y. Su, T. M. Khoshgoftaar, “A Survey of Collaborative Filtering Techniques,” Advances in
Artificial Intelligence, vol. 2009, 2009. Article (CrossRef Link)

[20] Y. Yu, Y. Gu, H. Zuo, J. Wang, D. Wang, “Social recommendation algorithms with user feedback
information,” Concurrency and Computation Practice and Experience, vol. 33, 2021.
Article(CrossRefLink)

[21] E. Lee and J. Jang, "Research Trend Analysis for Sustainable QR code use - Focus on Big Data
Analysis," KSII Transactions on Internet and Information Systems, vol. 15, no. 9, pp. 3221-3242,
2021. Article(CrossRefLink)

[22] L. Liu, W. Li, L. Wang and H. Jia, "PCRM: Increasing POI Recommendation Accuracy in
Location-Based Social Networks," KSII Transactions on Internet and Information Systems, vol.
12, no. 11, pp. 5344-5356, 2018. Article(CrossRefLink)

[23] Z. Cui, X. Xu, X. U. E. Fei, X. Cai, Y. Cao, W. Zhang, J. Chen, “Personalized recommendation
system based on collaborative filtering for IoT scenarios,” IEEE Transactions on Services
Computing, vol. 13, no. 4, pp:685-695, 2020. Article (CrossRef Link)

[24] D. Kluver, M. D. Ekstrand, J. A. Konstan, “Rating-based collaborative filtering: algorithms and
evaluation,” Social Information Access, pp. 344-390, 2018. Article (CrossRef Link)

https://doi.org/10.1007/s11134-020-09655-x
https://doi.org/10.1007/978-981-10-5523-2_2
https://doi.org/10.1109/CLUSTER.2018.00040
https://doi.org/10.1109/MCC.2018.022171662
https://doi.org/10.3837/tiis.2018.11.006
https://doi.org/10.1109/eScience.2016.7870881
https://doi.org/10.1109/BDC.2015.42
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1109/NOMS.2018.8406306
https://doi.org/10.1109/DSN48063.2020.00068
https://doi.org/10.1109/FAS-W.2016.23
https://doi.org/10.1109/ICOIACT.2018.8350801
https://doi.org/10.1155/2009/421425
https://doi.org/10.1002/cpe.5934
https://doi.org/10.3837/tiis.2021.09.008
https://doi.org/10.3837/tiis.2018.11.010
https://doi.org/10.1109/TSC.2020.2964552
https://doi.org/10.1007/978-3-319-90092-6_10

1464 Chen et al.: SaaS application mashup based on High Speed Message Processing

[25] A. Soylu, F. Mödritscher, F. Wild, P. D. Causmaecker, P. Desmet, “Mashups by Orchestration and
Widget-based Personal Environments: Key Challenges, Solution Strategies, and an Application,”
Program: Electronic Library and Information Systems, vol. 46, no. 4, pp. 383–428, 2012.
Article (CrossRef Link)

[26] B. Cheng, S. Zhao, J. Qian, Z. Zhai, J. Chen, “Lightweight service mashup middleware with REST
style architecture for IoT applications,” IEEE Transactions on Network and Service
Management, vol. 15, no. 3, pp. 1063-1075, 2018. Article (CrossRef Link)

[27] P. A. Bernstein, L. M. Haas, “Information integration in the enterprise,” Communication ACM,
vol. 51, no. 9, pp. 72-79, 2008. Article (CrossRef Link)

[28] Y. Lei, Y. C. Duan, K. C. Li, “A real-world service mashup platform based on data integration,
information synthesis, and knowledge fusion,” Connection Science, vol. 33, no. 3, pp. 463-481,
2021. Article (CrossRef Link)

[29] H. S. Seok, Y. J. Lee, “Ontology-based IoT context information modeling and semantic-based IoT
mashup services implementation,” The Journal of the Korea institute of electronic communication
sciences, vol. 14, no. 4, pp. 671-678, 2019. Article (CrossRef Link)

[30] W. Q. Lin, C. N. Wang, W. Wang, “Mashup-based Architecture for Social Trends Analysis
System,” in Proc. of 2019 IEEE 8th Joint International Information Technology and Artificial
Intelligence Conference (ITAIC), 2019. Article (CrossRef Link)

[31] M. F. Huang, "A queuing delay utilization scheme for on-path service aggregation in services-
oriented computing networks," IEEE Access, vol. 7, pp. 23816-23833, 2019.
Article (CrossRef Link)

[32] N. Y. Cao, J. S. Kim, J. H. Lee, S. W. Hwang, “A Case Study of Leveraging High-Throughput
Distributed Message Queue System for Many-Task Computing on Hadoop,” in Proc. of 2017
IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W),
pp. 257-262, 2017. Article (CrossRef Link)

[33] N. Kulathuramaiyer, “Mashups: Emerging application development paradigm for a digital journal,”
Journal of Universal Computer Science, vol. 13, no. 4, pp. 531–542, 2007.

[34] J. Y. Byun, Y. K. Kim, A. Y. Son, E. N. Huh, J. H. Hyun, “A real-time message delivery method
of publish/subscribe model in distributed cloud environment,” in Proc. of 2017 IEEE International
Conference on Cybernetics and Computational Intelligence, pp. 102-107, 2017.
Article (CrossRef Link)

[35] J. Kreps, N. Narkhede, J. Rao, “Kafka: a Distributed Messaging System for Log Processing,” in
Proc.of 6th International Workshop on Networking Meets Databases, 2011.

[36] P. Dobbelaere, K. S. Esmaili, “Industry Paper: Kafka versus RabbitMQ,” in Proc. of 11th ACM
International Conference on Distributed and Event-based Systems, pp. 227-238, 2017.
Article (CrossRef Link)

https://doi.org/10.1108/00330331211276486
https://doi.org/10.1109/TNSM.2018.2827933
https://doi.org/10.1145/1378727.1378745
https://doi.org/10.1080/09540091.2020.1841110
https://doi.org/10.13067/JKIECS.2019.14.4.671
https://doi.org/10.1109/ITAIC.2019.8785460
https://doi.org/10.1109/ACCESS.2019.2899402
https://doi.org/10.1109/FAS-W.2017.156
https://doi.org/10.1109/CYBERNETICSCOM.2017.8311692
https://doi.org/10.1145/3093742.3093908

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1465

Zhiguo Chen received the M.S. and Ph.D. degree from the division of Internet and
Multimedia Engineering at Konkuk University, Seoul, Korea, in 2014 and 2019, respectively.
He is an Associate Professor with the School of Computer Science, Nanjing University of
Information Science & Technology, Jiangsu, China. His research interests include artificial
intelligence, information security and cloud computing, etc.

Myoungjin Kim received the M.S. and Ph.D. degree from the division of Internet and
Multimedia Engineering at Konkuk University, Seoul, Korea, in 2009 and 2019, respectively.
He is CEO with Innogrid, Seoul, South Korea. His research interests include cloud computing,
big data, high performance computing, etc.

Yun Cui received the M.S. and Ph.D. degree from the division of Internet and Multimedia
Engineering at Konkuk University, Seoul, Korea, in 2010 and 2019, respectively. He is an
Associate Professor with the School of Computer Science, Jiangsu University of Science and
Technology, Jiangsu, China. His research interests include cloud computing, big data,
information security, etc.

